
Hands-on QuEst++

Carolina Scarton, Gustavo Paetzold and Lucia Specia

University of Sheffield

https://github.com/ghpaetzold/questplusplus

COLING, Osaka, 11 Dec 2016



Definition

Goal: framework to explore features for QE

I Feature extractors: for 150+ features of all types: Java

I Machine learning: wrappers for a number of algorithms in
the scikit-learn toolkit, grid search, feature selection: Python

Open source: http://www.quest.dcs.shef.ac.uk/

http://www.quest.dcs.shef.ac.uk/


Definition

Goal: framework to explore features for QE

I Feature extractors: for 150+ features of all types: Java

I Machine learning: wrappers for a number of algorithms in
the scikit-learn toolkit, grid search, feature selection: Python

Open source: http://www.quest.dcs.shef.ac.uk/

http://www.quest.dcs.shef.ac.uk/


Definition

Goal: framework to explore features for QE

I Feature extractors: for 150+ features of all types: Java

I Machine learning: wrappers for a number of algorithms in
the scikit-learn toolkit, grid search, feature selection: Python

Open source: http://www.quest.dcs.shef.ac.uk/

http://www.quest.dcs.shef.ac.uk/


Definition

Goal: framework to explore features for QE

I Feature extractors: for 150+ features of all types: Java

I Machine learning: wrappers for a number of algorithms in
the scikit-learn toolkit, grid search, feature selection: Python

Open source: http://www.quest.dcs.shef.ac.uk/

http://www.quest.dcs.shef.ac.uk/


Definition

New release: word and document-level feature extraction and
machine learning added

I Feature extractors: 40 features for word-level and 79
features for document-level

I Machine learning: support to Conditional Random Fields
(CRF) added for word-level models

I Another important improvement: changes on the core
functionalities



Definition

New release: word and document-level feature extraction and
machine learning added

I Feature extractors: 40 features for word-level and 79
features for document-level

I Machine learning: support to Conditional Random Fields
(CRF) added for word-level models

I Another important improvement: changes on the core
functionalities



Definition

New release: word and document-level feature extraction and
machine learning added

I Feature extractors: 40 features for word-level and 79
features for document-level

I Machine learning: support to Conditional Random Fields
(CRF) added for word-level models

I Another important improvement: changes on the core
functionalities



Definition

New release: word and document-level feature extraction and
machine learning added

I Feature extractors: 40 features for word-level and 79
features for document-level

I Machine learning: support to Conditional Random Fields
(CRF) added for word-level models

I Another important improvement: changes on the core
functionalities



System and baseline features required

I Java 8 (OpenJDK or Oracle versions)

I Sentence and word-level baseline features
I Perl 5 (or above)
I SRILM
I Tokenizer and Truecaser (from Moses toolkit)

I Word-level features
I Stanford Core NLP 3.5.1 models
I Stanford Core NLP Spanish model
I Universal WordNet plugin



System and baseline features required

I Java 8 (OpenJDK or Oracle versions)
I Sentence and word-level baseline features

I Perl 5 (or above)
I SRILM
I Tokenizer and Truecaser (from Moses toolkit)

I Word-level features
I Stanford Core NLP 3.5.1 models
I Stanford Core NLP Spanish model
I Universal WordNet plugin



System and baseline features required

I Java 8 (OpenJDK or Oracle versions)
I Sentence and word-level baseline features

I Perl 5 (or above)
I SRILM
I Tokenizer and Truecaser (from Moses toolkit)

I Word-level features
I Stanford Core NLP 3.5.1 models
I Stanford Core NLP Spanish model
I Universal WordNet plugin



Basic Usage - Sentence-level

java -cp QuEst++.jar shef.mt.SentenceLevelFeatureExtractor
-tok -case true
-lang <<lang source>> <<lang target>>
-input <<input source>> <<input target>>
-config <<config file>>



Input files

I Word and sentence levels: file with one sentence per line

I Document level: file with paths for documents

Files from source and target should have the same number
of lines



Input files

I Word and sentence levels: file with one sentence per line

I Document level: file with paths for documents

Files from source and target should have the same number
of lines



Input files

I Word and sentence levels: file with one sentence per line

I Document level: file with paths for documents

Files from source and target should have the same number
of lines



Folders

I src: source code

I lang resources: folder containing all language resources
required for the features

I lib: external libraries needed for feature extraction

I config: configuration files for running QuEst++

I input: auxiliary input folder

I output: output folder



Adding a new feature

I Example with sentence-level feature extractor

I New feature: complex words per sentence (averaged by the
length of sentence)

I Language Resource: list of simple words (LSW)

I Idea: count words not in the LSW and normalise by number
of words in the sentence



Adding a new feature

I Example with sentence-level feature extractor

I New feature: complex words per sentence (averaged by the
length of sentence)

I Language Resource: list of simple words (LSW)

I Idea: count words not in the LSW and normalise by number
of words in the sentence



Adding a new feature

I Example with sentence-level feature extractor

I New feature: complex words per sentence (averaged by the
length of sentence)

I Language Resource: list of simple words (LSW)

I Idea: count words not in the LSW and normalise by number
of words in the sentence



Adding a new feature

I Example with sentence-level feature extractor

I New feature: complex words per sentence (averaged by the
length of sentence)

I Language Resource: list of simple words (LSW)

I Idea: count words not in the LSW and normalise by number
of words in the sentence



Adding a new feature

I Creating a processor for the new feature
I Package: shef.mt.tools

I Function: prepare resources to be used by features
I Extends ResourceProcessor class: add the resources to the

sentence (processNextSentence method)
I It is useful because a unique processor can be used by several

features



Adding a new feature

I Creating a processor for the new feature
I Package: shef.mt.tools
I Function: prepare resources to be used by features

I Extends ResourceProcessor class: add the resources to the
sentence (processNextSentence method)

I It is useful because a unique processor can be used by several
features



Adding a new feature

I Creating a processor for the new feature
I Package: shef.mt.tools
I Function: prepare resources to be used by features
I Extends ResourceProcessor class: add the resources to the

sentence (processNextSentence method)

I It is useful because a unique processor can be used by several
features



Adding a new feature

I Creating a processor for the new feature
I Package: shef.mt.tools
I Function: prepare resources to be used by features
I Extends ResourceProcessor class: add the resources to the

sentence (processNextSentence method)
I It is useful because a unique processor can be used by several

features



Adding a new feature

I Create a new Java class called
ComplexWordsProcessor.java

I Package: shef.mt.tools

I Extends: ResourceProcessor class
I Read the LSW and store it on a ArrayList



Adding a new feature

I Create a new Java class called
ComplexWordsProcessor.java

I Package: shef.mt.tools
I Extends: ResourceProcessor class

I Read the LSW and store it on a ArrayList



Adding a new feature

I Create a new Java class called
ComplexWordsProcessor.java

I Package: shef.mt.tools
I Extends: ResourceProcessor class
I Read the LSW and store it on a ArrayList



Adding a new feature

I Creating a class for the new feature
I Package: shef.mt.features.impl.bb

I Extends Feature class: run method - feature extraction itself
I Feature classes are usually named following a number order

(e.g. Feature1001, Feature1002)



Adding a new feature

I Creating a class for the new feature
I Package: shef.mt.features.impl.bb
I Extends Feature class: run method - feature extraction itself

I Feature classes are usually named following a number order
(e.g. Feature1001, Feature1002)



Adding a new feature

I Creating a class for the new feature
I Package: shef.mt.features.impl.bb
I Extends Feature class: run method - feature extraction itself
I Feature classes are usually named following a number order

(e.g. Feature1001, Feature1002)



Adding a new feature

I Create a new Java class called Feature7001.java
I Package: shef.mt.features.impl.bb

I Extends: Feature class
I Get the ArrayList from the ComplexWordsProcessor class

and calculate the feature
I Also define the resource that will be required for this feature



Adding a new feature

I Create a new Java class called Feature7001.java
I Package: shef.mt.features.impl.bb
I Extends: Feature class

I Get the ArrayList from the ComplexWordsProcessor class
and calculate the feature

I Also define the resource that will be required for this feature



Adding a new feature

I Create a new Java class called Feature7001.java
I Package: shef.mt.features.impl.bb
I Extends: Feature class
I Get the ArrayList from the ComplexWordsProcessor class

and calculate the feature

I Also define the resource that will be required for this feature



Adding a new feature

I Create a new Java class called Feature7001.java
I Package: shef.mt.features.impl.bb
I Extends: Feature class
I Get the ArrayList from the ComplexWordsProcessor class

and calculate the feature
I Also define the resource that will be required for this feature



Adding a new feature

I Feature configuration file
I Folder: config/features

I XML file with the featureset that will be executed



Adding a new feature

I Feature configuration file
I Folder: config/features
I XML file with the featureset that will be executed



Adding a new feature

I Feature configuration file
I Create a file named features complex words.xml inside the

folder config/features

I Add the new feature to this file



Adding a new feature

I Feature configuration file
I Create a file named features complex words.xml inside the

folder config/features
I Add the new feature to this file



Adding a new feature

I Configuration file
I Folder: config

I For sentence-level: config.sentence-level.properties
I Contains basic configuration for the system and paths to

resources and tools



Adding a new feature

I Configuration file
I Folder: config
I For sentence-level: config.sentence-level.properties

I Contains basic configuration for the system and paths to
resources and tools



Adding a new feature

I Configuration file
I Folder: config
I For sentence-level: config.sentence-level.properties
I Contains basic configuration for the system and paths to

resources and tools



Adding a new feature

I Configuration file
I Add the resource source.simplewords to the configuration file

I Change the option featureConfig to the path to
features complex words.xml



Adding a new feature

I Configuration file
I Add the resource source.simplewords to the configuration file
I Change the option featureConfig to the path to

features complex words.xml



Adding a new feature

I SentenceLevelProcessorFactory.java
I Package: shef.mt.tools

I Function: create all processors required by the features
I Only generate processors that will be used (improvement of

QuEst++)
I It is the connection between features and configuration file



Adding a new feature

I SentenceLevelProcessorFactory.java
I Package: shef.mt.tools
I Function: create all processors required by the features

I Only generate processors that will be used (improvement of
QuEst++)

I It is the connection between features and configuration file



Adding a new feature

I SentenceLevelProcessorFactory.java
I Package: shef.mt.tools
I Function: create all processors required by the features
I Only generate processors that will be used (improvement of

QuEst++)

I It is the connection between features and configuration file



Adding a new feature

I SentenceLevelProcessorFactory.java
I Package: shef.mt.tools
I Function: create all processors required by the features
I Only generate processors that will be used (improvement of

QuEst++)
I It is the connection between features and configuration file



Adding a new feature

I SentenceLevelProcessorFactory.java
I Package: shef.mt.tools

I Add an if block containing the calling to a method called
getComplexWordsProcessor

I Implement getComplexWordsProcessor method



Adding a new feature

I SentenceLevelProcessorFactory.java
I Package: shef.mt.tools
I Add an if block containing the calling to a method called

getComplexWordsProcessor

I Implement getComplexWordsProcessor method



Adding a new feature

I SentenceLevelProcessorFactory.java
I Package: shef.mt.tools
I Add an if block containing the calling to a method called

getComplexWordsProcessor
I Implement getComplexWordsProcessor method



Build

I NetBeans 8.1

I ant “-Dplatforms.JDK 1.8.home=/usr/lib/jvm/java-8-
<<version>>”



Run

java -cp QuEst++.jar
shef.mt.SentenceLevelFeatureExtractor
-tok -case true
-lang <<lang source>> <<lang target>>
-input <<input source>> <<input target>>
-config <<config file>>
Check the file output.txt inside output/test



System requirements

I Python 2.7.6 (or above - only 2.7 stable distributions)

I SciPy and NumPy (SciPy >=0.9 and NumPy >=1.6.1)

I scikit-learn (version 0.15.2)

I PyYAML

I GPy

I CRFsuite



System requirements

I Python 2.7.6 (or above - only 2.7 stable distributions)

I SciPy and NumPy (SciPy >=0.9 and NumPy >=1.6.1)

I scikit-learn (version 0.15.2)

I PyYAML

I GPy

I CRFsuite



System requirements

I Python 2.7.6 (or above - only 2.7 stable distributions)

I SciPy and NumPy (SciPy >=0.9 and NumPy >=1.6.1)

I scikit-learn (version 0.15.2)

I PyYAML

I GPy

I CRFsuite



Folders

I learning: main folder

I config: configuration files

I src: source code files

I data: example data (same format as output of feature
extractor) + scores



Run

python src/learn model.py config/<<config file>>



Machine learning algorithms

I SVR

I SVC

I LassoCV

I LassorLars

I LassorLarsCV

I GP (implemented using GPy - need some code update)

I CRF (implemented using CRFsuite)



Adding a machine learning algorithm

Exemple using an algorithm from scikit-learn

I Algorithm: Ridge: Linear least squares with l2 regularization

I Package: sklearn.linear.model.Ridge

I Idea: include the algorithm on the available code



Adding a machine learning algorithm

Exemple using an algorithm from scikit-learn

I Algorithm: Ridge: Linear least squares with l2 regularization

I Package: sklearn.linear.model.Ridge

I Idea: include the algorithm on the available code



Adding a machine learning algorithm

Exemple using an algorithm from scikit-learn

I Algorithm: Ridge: Linear least squares with l2 regularization

I Package: sklearn.linear.model.Ridge

I Idea: include the algorithm on the available code



Adding a machine learning algorithm

Exemple using an algorithm from scikit-learn

I Algorithm: Ridge: Linear least squares with l2 regularization

I Package: sklearn.linear.model.Ridge

I Idea: include the algorithm on the available code



Adding a machine learning algorithm

learn model.py

I Main class of QuEst++ machine learning module

I Method: set learning method(config, X train, y train)

I Create estimators for the new algorithm



Adding a machine learning algorithm

learn model.py

I Main class of QuEst++ machine learning module

I Method: set learning method(config, X train, y train)

I Create estimators for the new algorithm



Adding a machine learning algorithm

learn model.py

I Main class of QuEst++ machine learning module

I Method: set learning method(config, X train, y train)

I Create estimators for the new algorithm



Configuration file

I Folder: config

I Files follows the YAML format

I Open the file svr.cfg to see an example

Create a new file called ridge.cfg and follow the structured
YAML to provide parameters for the model



Configuration file

I Folder: config

I Files follows the YAML format

I Open the file svr.cfg to see an example

Create a new file called ridge.cfg and follow the structured
YAML to provide parameters for the model



Configuration file

I Folder: config

I Files follows the YAML format

I Open the file svr.cfg to see an example

Create a new file called ridge.cfg and follow the structured
YAML to provide parameters for the model



Configuration file

I Folder: config

I Files follows the YAML format

I Open the file svr.cfg to see an example

Create a new file called ridge.cfg and follow the structured
YAML to provide parameters for the model



Run

python src/learn model.py config/ridge.cfg



Hands-on QuEst++

Carolina Scarton, Gustavo Paetzold and Lucia Specia

University of Sheffield

https://github.com/ghpaetzold/questplusplus

COLING, Osaka, 11 Dec 2016


	Practice
	QuEst
	QuEst++
	Feature Extractor module
	Machine Learning module


