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Growing awareness of methodological problems
• Current NLP relies heavily on linguistic annotation

• Annotation guidelines vary across languages
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Why is this a problem?

• Hard to compare empirical results across languages

• Hard to usefully do cross-lingual structure transfer

• Hard to evaluate cross-lingual learning

• Hard to build and maintain multilingual systems

• Hard to make comparative linguistic studies

• Hard to validate linguistic typology

• Hard to make progress towards a universal parser
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Milestones:
• Kick-off meeting at EACL in Gothenburg, April 2014
• Release of annotation guidelines, v1, October 2014
• Releases of treebanks every 6 months, v1.0–v1.4
• Release of annotation guidelines, v2, December 2016 

Open community effort – anyone can contribute!

Universal Dependencies

Universal Dependencies
http://universaldependencies.org
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 UD Japanese 
 Masayuki Asahara
 Hiroshi Kanayama
 Yuji Matsumoto
 Yusuke Miyao
 Shinsuke Mori
 Takaaki Tanaka
 Sumire Uematsu
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Goals and Requirements

Cross-linguistically consistent grammatical annotation

Support multilingual research in NLP and linguistics
• Meaningful linguistic analysis within and across languages

• Syntactic parsing in monolingual and cross-lingual settings

• Useful information for downstream language understanding tasks

Build on common usage and existing de facto standards

Complement – not replace – language-specific schemes
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Maximize parallelism – but don’t overdo it
• Don’t annotate the same thing in different ways

• Don’t make different things look the same

• Don’t annotate things that are not there

Universal taxonomy with language-specific elaboration
• Languages select from a universal pool of categories

• Allow language-specific extensions

The UD Philosophy
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Recoverability
• Transparent mapping from input text to word segmentation 
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Syntactic Relations

Taxonomy of 37 universal syntactic relations
• Three types of structures: nominals, clauses, modifiers

• Core arguments vs. other dependents (not complements vs. adjuncts)

• Language-specific subtypes

Basic and enhanced representations
• Basic dependencies form a (possibly non-projective) tree

• Additional dependencies in the enhanced representation



Syntactic Relations
Nominal Clause Modifier 

Word
Function 

Word

Core  
Predicate Dep

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Predicate Dep

obl
vocative

expl
dislocated

advcl
advmod*
discourse

aux
cop

mark

Nominal Dep
nmod
appos

nummod
acl amod

det
clf

case

Coordination MWE Loose Special Other

conj
cc

fixed
flat

compound

parataxis
list

orphan 
goeswith

reparandum

punct
root
dep

* Generalized modifier of predicates and (non-nominal) modifiers
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Universal relations
• Broad categories to allow cross-linguistic comparison

Language-specific relations
• Subtypes to capture language-specific phenomena

A Two-Level Architecture

Universal Subtype

acl acl:relcl

compound compound:prt

nmod nmod:poss
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Why such weird dependency trees?
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“Such an approach to the syntax of natural languages is contrary to most work in 
theoretical syntax in the past 35 years, regardless of whether this work is 

constituency- or dependency-based.” (Groß and Osborne, 2015)
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“Function-Head Dependencies”

“It is now fairly well known that, while dependency representations in which content 
words are made heads tend to help semantically oriented downstream applications, 

dependency parsing numbers are higher if you make auxiliary verbs heads […] and if you 
make prepositions the head of prepositional phrases.” (De Marneffe et al., 2014)

Crappy Parsing?



Manning’s Law
 The secret to understanding the design of UD is to realize that it is a very subtle  
 compromise between approximately 6 things: 

 1 UD needs to be satisfactory on linguistic analysis grounds for individual languages. 
 2 UD needs to be good for linguistic typology, i.e., providing a suitable basis for  

bringing out cross-linguistic parallelism across languages and language families. 
 3 UD must be suitable for rapid, consistent annotation by a human annotator. 
 4 UD must be suitable for computer parsing with high accuracy. 
 5 UD must be easily comprehended and used by a non-linguist, whether a language 

learner or an engineer with prosaic needs for language processing. 
 6 UD must support well downstream language understanding tasks (relation 

extraction, reading comprehension, machine translation, …). 

 It’s easy to come up with a proposal that improves UD on one of these dimensions.  
 The interesting and difficult part is to improve UD while remaining sensitive to all  
 these dimensions.



What is a head?

Zwicky (1985), summarised by Hudson (1987)
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Why choose one?

Head properties may be shared by several elements
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Dependencies to Logical Forms
Composition

Disney acquired Pixar

nsubj dobj

root

(nsubj (dobj acquired Pixar) Disney)

�z.9xy.acquired(ze) ^ Pixar(ya) ^ Disney(xa) ^
arg1(ze, xa) ^ arg2(ze, ya)

1

20

Reddy et al. (2016) Transforming Dependency Structures 
to Logical Forms for Semantic Parsing
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karaka  vibhakti

kakariuke  bunsetsu
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Monolingual parsing using transform-detransform English
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Inconclusive 
results

De Lhoneux and Nivre (2016)
Monolingual parsing using transform-detransform All aux Negative 

results

Attardi et al. (2015)
Monolingual parsing using different representations Italian case

cop UD > ISDT

Rosa (2015) 
Multi-source delexicalized transfer parsing All case UD > PDT
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Not so bad after all? 
• No clear evidence that “content-head” is harder to parse in general

• In the cross-lingual setting, it even seems to work better

Can we do better?
• Exploit the full representation – lexical and functional heads

• Use typology of syntactic relations as a bias for learning
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Constituency parsing – largely driven by PTB
• Perhaps too much emphasis on English (until recently)

• But deep analysis of categories and representations

Dependency parsing – largely driven by CoNLL data 
• More attention to typological diversity from the start

• But parsers had to remain agnostic about linguistic categories



Dependency Parsing



• Parsers know only one type of syntactic relation

Dependency Parsing

h d



• Parsers know only one type of syntactic relation

• Parsers do not interpret dependency labels

Dependency Parsing

h d

?



• Parsers know only one type of syntactic relation

• Parsers do not interpret dependency labels

• Parsers represent every construction by its “head”

Dependency Parsing

h d

?
h



black cat

amod
The dog was chased by the                                .

cat

Dependency Parsing

• Endocentric construction with cat as head

• Little (syntactic) information is lost by dropping black



• Dissociated nucleus consisting of was and chased

• Neither content-head nor function-head is right!

was chased

aux

chased

chasedwas

main

was

The dog                                   by the black cat.

Dependency Parsing
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Figure 5: The representation of a depen-
dency subtree (above) is computed by re-
cursively applying composition functions to
hhead, modifier, relationi triples. In the case of
multiple dependents of a single head, the recur-
sive branching order is imposed by the order of
the parser’s reduce operations (below).

objective with respect to the model parameters.
The computations for a single parsing model were
run on a single thread on a CPU. Using the dimen-
sions discussed in the next section, we required
between 8 and 12 hours to reach convergence on a
held-out dev set.6

Parameter optimization was performed using
stochastic gradient descent with an initial learn-
ing rate of ⌘0 = 0.1, and the learning rate was
updated on each pass through the training data as
⌘
t

= ⌘0/(1 + ⇢t), with ⇢ = 0.1 and where t is the
number of epochs completed. No momentum was
used. To mitigate the effects of “exploding” gra-
dients, we clipped the `2 norm of the gradient to 5
before applying the weight update rule (Sutskever
et al., 2014; Graves, 2013). An `2 penalty of
1 ⇥ 10

�6 was applied to all weights.
Matrix and vector parameters were initialized

with uniform samples in ±

p
6/(r + c), where r

and c were the number of rows and columns in the
structure (Glorot and Bengio, 2010).

Dimensionality. The full version of our parsing
model sets dimensionalities as follows. LSTM
hidden states are of size 100, and we use two lay-
ers of LSTMs for each stack. Embeddings of the
parser actions used in the composition functions
have 16 dimensions, and the output embedding
size is 20 dimensions. Pretained word embeddings
have 100 dimensions (English) and 80 dimensions
(Chinese), and the learned word embeddings have

6Software for replicating the experiments is available
from https://github.com/clab/lstm-parser.

32 dimensions. Part of speech embeddings have
12 dimensions.

These dimensions were chosen based on in-
tuitively reasonable values (words should have
higher dimensionality than parsing actions, POS
tags, and relations; LSTM states should be rela-
tively large), and it was confirmed on development
data that they performed well.7 Future work might
more carefully optimize these parameters; our re-
ported architecture strikes a balance between min-
imizing computational expense and finding solu-
tions that work.

5 Experiments

We applied our parsing model and several varia-
tions of it to two parsing tasks and report results
below.

5.1 Data
We used the same data setup as Chen and Manning
(2014), namely an English and a Chinese parsing
task. This baseline configuration was chosen since
they likewise used a neural parameterization to
predict actions in an arc-standard transition-based
parser.

• For English, we used the Stanford Depen-
dencency (SD) treebank (de Marneffe et al.,
2006) used in (Chen and Manning, 2014)
which is the closest model published, with
the same splits.8 The part-of-speech tags
are predicted by using the Stanford Tagger
(Toutanova et al., 2003) with an accuracy
of 97.3%. This treebank contains a negligi-
ble amount of non-projective arcs (Chen and
Manning, 2014).

• For Chinese, we use the Penn Chinese Tree-
bank 5.1 (CTB5) following Zhang and Clark
(2008),9 with gold part-of-speech tags which
is also the same as in Chen and Manning
(2014).

Language model word embeddings were gener-
ated, for English, from the AFP portion of the En-
glish Gigaword corpus (version 5), and from the
complete Chinese Gigaword corpus (version 2),

7We did perform preliminary experiments with LSTM
states of 32, 50, and 80, but the other dimensions were our
initial guesses.

8Training: 02-21. Development: 22. Test: 23.
9Training: 001–815, 1001–1136. Development: 886–

931, 1148–1151. Test: 816–885, 1137–1147.

Dyer et al. (2015) Transition-Based Dependency Parsing with Stack Long Short-Term Memory

composition functions
+1–2% labeled accuracy

Stenetorp (2013) Transition-Based Dependency Parsing Using Recursive Neural Networks
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below.

5.1 Data
We used the same data setup as Chen and Manning
(2014), namely an English and a Chinese parsing
task. This baseline configuration was chosen since
they likewise used a neural parameterization to
predict actions in an arc-standard transition-based
parser.

• For English, we used the Stanford Depen-
dencency (SD) treebank (de Marneffe et al.,
2006) used in (Chen and Manning, 2014)
which is the closest model published, with
the same splits.8 The part-of-speech tags
are predicted by using the Stanford Tagger
(Toutanova et al., 2003) with an accuracy
of 97.3%. This treebank contains a negligi-
ble amount of non-projective arcs (Chen and
Manning, 2014).

• For Chinese, we use the Penn Chinese Tree-
bank 5.1 (CTB5) following Zhang and Clark
(2008),9 with gold part-of-speech tags which
is also the same as in Chen and Manning
(2014).

Language model word embeddings were gener-
ated, for English, from the AFP portion of the En-
glish Gigaword corpus (version 5), and from the
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composition functions
+1–2% labeled accuracy

Noun phrases Verb phrases Prepositional phrases
Canadian (0.09) Auto (0.31) Workers (0.2) union (0.22) president (0.18) buying (0.31) and (0.25) selling (0.21) NP (0.23) ADVP (0.14) on (0.72) NP (0.14)
no (0.29) major (0.05) Eurobond (0.32) or (0.01) foreign (0.01) bond (0.1) offerings (0.22) ADVP (0.27) show (0.29) PRT (0.23) PP (0.21) ADVP (0.05) for (0.54) NP (0.40)
Saatchi (0.12) client (0.14) Philips (0.21) Lighting (0.24) Co. (0.29) pleaded (0.48) ADJP (0.23) PP (0.15) PP (0.08) PP (0.06) ADVP (0.02) because (0.73) of (0.18) NP (0.07)
nonperforming (0.18) commercial (0.23) real (0.25) estate (0.1) assets (0.25) received (0.33) PP (0.18) NP (0.32) PP (0.17) such (0.31) as (0.65) NP (0.04)
the (0.1) Jamaica (0.1) Tourist (0.03) Board (0.17) ad (0.20) account (0.40) cut (0.27) NP (0.37) PP (0.22) PP (0.14) from (0.39) NP (0.49) PP (0.12)
the (0.0) final (0.18) hour (0.81) to (0.99) VP (0.01) of (0.97) NP (0.03)
their (0.0) first (0.23) test (0.77) were (0.77) n’t (0.22) VP (0.01) in (0.93) NP (0.07)
Apple (0.62) , (0.02) Compaq (0.1) and (0.01) IBM (0.25) did (0.39) n’t (0.60) VP (0.01) by (0.96) S (0.04)
both (0.02) stocks (0.03) and (0.06) futures (0.88) handle (0.09) NP (0.91) at (0.99) NP (0.01)
NP (0.01) , (0.0) and (0.98) NP (0.01) VP (0.15) and (0.83) VP 0.02) NP (0.1) after (0.83) NP (0.06)

Table 5: Attention weight vectors for some representative samples for NPs, VPs, and PPs.

ables can be used to recover fine-grained non-
terminal categories. We therefore expect that the
vector embeddings of the constituents that the U-
GA-RNNG correctly recovers (on test data) will
capture categories similar to those in the Penn
Treebank.

Experiments. We first consider unlabeled F1

parsing accuracy. On test data (with the usual
split), the GA-RNNG achieves 94.2%, while the
U-GA-RNNG achieves 93.5%. This result sug-
gests that non-terminal category labels add a rel-
atively small amount of information compared to
purely endocentric representations.

Visualization. If endocentricity is largely suf-
ficient to account for the behavior of phrases,
where do our robust intuitions for syntactic cate-
gory types come from? We use t-SNE (van der
Maaten and Hinton, 2008) to visualize composed
phrase vectors from the U-GA-RNNG model ap-
plied to the test data, with unlabeled (all non-
terminals are replaced with an “X”) gold-standard
parses to focus on the representation of phrases
(the test set was unseen by the model before).

Figure 4 shows that the U-GA-RNNG tends
to recover non-terminal categories as encoded in
the Penn Treebank, even when trained without
them.12 These results suggest non-terminal types
can be inferred from the purely endocentric com-
positional process to a certain extent, and that the
phrase clusters found by the U-GA-RNNG largely
overlap with non-terminal categories.

7 Related Work

The problem of understanding neural network
models in NLP has been previously studied for se-
quential RNNs (Karpathy et al., 2015; Li et al.,
2016). Shi et al. (2016) showed that sequence-
to-sequence machine translation models capture a
certain degree of syntactic knowledge as a byprod-
uct of the translation objective. Our experiment on

12We see a similar clustering for the non-ablated GA-
RNNG model, not shown for brevity.

Figure 4: t-SNE result of clustering the composed
vectors when training without non-terminal cat-
egories. Vectors in dark blue are VPs, red are
SBARs, yellow are PPs, light blue are NPs, and
green are Ss.

the importance of composition function was moti-
vated by Vinyals et al. (2015) and Wiseman and
Rush (2016), who achieved competitive parsing
accuracy with sequence-to-sequence models.

Extensive previous work on phrase-structure
parsing typically employs the probabilistic
context-free grammar formalism, with lexicalized
(Collins, 1997) and non-terminal (Johnson,
1998; Klein and Manning, 2003) augmentations;
the RNNG has less inductive bias than these
earlier models and hence a weaker independence
assumption. The conjecture that fine-grained
non-terminal rules and labels can be discovered
given weaker bracketing structures were based on
several studies (Chiang and Bikel, 2002; Klein
and Manning, 2002; Petrov et al., 2006).

8 Conclusion

We probe what recurrent neural network gram-
mars, a probabilistic generative model of language
based on neural networks, learn about syntax,
through ablation scenarios and a novel variant with
attention mechanism (GA-RNNG) on the compo-

Kuncoro et al. (2016) What Do Recurrent Neural Network Grammars Learn About Syntax?
attention
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Figure 5: The representation of a depen-
dency subtree (above) is computed by re-
cursively applying composition functions to
hhead, modifier, relationi triples. In the case of
multiple dependents of a single head, the recur-
sive branching order is imposed by the order of
the parser’s reduce operations (below).

objective with respect to the model parameters.
The computations for a single parsing model were
run on a single thread on a CPU. Using the dimen-
sions discussed in the next section, we required
between 8 and 12 hours to reach convergence on a
held-out dev set.6

Parameter optimization was performed using
stochastic gradient descent with an initial learn-
ing rate of ⌘0 = 0.1, and the learning rate was
updated on each pass through the training data as
⌘
t

= ⌘0/(1 + ⇢t), with ⇢ = 0.1 and where t is the
number of epochs completed. No momentum was
used. To mitigate the effects of “exploding” gra-
dients, we clipped the `2 norm of the gradient to 5
before applying the weight update rule (Sutskever
et al., 2014; Graves, 2013). An `2 penalty of
1 ⇥ 10

�6 was applied to all weights.
Matrix and vector parameters were initialized

with uniform samples in ±

p
6/(r + c), where r

and c were the number of rows and columns in the
structure (Glorot and Bengio, 2010).

Dimensionality. The full version of our parsing
model sets dimensionalities as follows. LSTM
hidden states are of size 100, and we use two lay-
ers of LSTMs for each stack. Embeddings of the
parser actions used in the composition functions
have 16 dimensions, and the output embedding
size is 20 dimensions. Pretained word embeddings
have 100 dimensions (English) and 80 dimensions
(Chinese), and the learned word embeddings have

6Software for replicating the experiments is available
from https://github.com/clab/lstm-parser.

32 dimensions. Part of speech embeddings have
12 dimensions.

These dimensions were chosen based on in-
tuitively reasonable values (words should have
higher dimensionality than parsing actions, POS
tags, and relations; LSTM states should be rela-
tively large), and it was confirmed on development
data that they performed well.7 Future work might
more carefully optimize these parameters; our re-
ported architecture strikes a balance between min-
imizing computational expense and finding solu-
tions that work.

5 Experiments

We applied our parsing model and several varia-
tions of it to two parsing tasks and report results
below.

5.1 Data
We used the same data setup as Chen and Manning
(2014), namely an English and a Chinese parsing
task. This baseline configuration was chosen since
they likewise used a neural parameterization to
predict actions in an arc-standard transition-based
parser.

• For English, we used the Stanford Depen-
dencency (SD) treebank (de Marneffe et al.,
2006) used in (Chen and Manning, 2014)
which is the closest model published, with
the same splits.8 The part-of-speech tags
are predicted by using the Stanford Tagger
(Toutanova et al., 2003) with an accuracy
of 97.3%. This treebank contains a negligi-
ble amount of non-projective arcs (Chen and
Manning, 2014).

• For Chinese, we use the Penn Chinese Tree-
bank 5.1 (CTB5) following Zhang and Clark
(2008),9 with gold part-of-speech tags which
is also the same as in Chen and Manning
(2014).

Language model word embeddings were gener-
ated, for English, from the AFP portion of the En-
glish Gigaword corpus (version 5), and from the
complete Chinese Gigaword corpus (version 2),

7We did perform preliminary experiments with LSTM
states of 32, 50, and 80, but the other dimensions were our
initial guesses.

8Training: 02-21. Development: 22. Test: 23.
9Training: 001–815, 1001–1136. Development: 886–

931, 1148–1151. Test: 816–885, 1137–1147.
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atively small amount of information compared to
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where do our robust intuitions for syntactic cate-
gory types come from? We use t-SNE (van der
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plied to the test data, with unlabeled (all non-
terminals are replaced with an “X”) gold-standard
parses to focus on the representation of phrases
(the test set was unseen by the model before).

Figure 4 shows that the U-GA-RNNG tends
to recover non-terminal categories as encoded in
the Penn Treebank, even when trained without
them.12 These results suggest non-terminal types
can be inferred from the purely endocentric com-
positional process to a certain extent, and that the
phrase clusters found by the U-GA-RNNG largely
overlap with non-terminal categories.
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The problem of understanding neural network
models in NLP has been previously studied for se-
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to-sequence machine translation models capture a
certain degree of syntactic knowledge as a byprod-
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green are Ss.
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vated by Vinyals et al. (2015) and Wiseman and
Rush (2016), who achieved competitive parsing
accuracy with sequence-to-sequence models.

Extensive previous work on phrase-structure
parsing typically employs the probabilistic
context-free grammar formalism, with lexicalized
(Collins, 1997) and non-terminal (Johnson,
1998; Klein and Manning, 2003) augmentations;
the RNNG has less inductive bias than these
earlier models and hence a weaker independence
assumption. The conjecture that fine-grained
non-terminal rules and labels can be discovered
given weaker bracketing structures were based on
several studies (Chiang and Bikel, 2002; Klein
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Conclusion

Dubious linguistics?
• Lexical dependencies and functional relations encoded in a single tree 

• Grounded in linguistic typology and dependency grammar traditions

Crappy parsing?
• Not so bad with existing parsers, especially for cross-lingual parsing

• Learn richer parsing models grounded in linguistic typology



UD Events in 2017
CoNLL-2017 Shared Task  
http://universaldependencies.org/conll17/ 

• Multilingual Parsing from Raw Text to Universal Dependencies

• Collocated with ACL, August 3–4, 2017, Vancouver, Canada

• Call for participation in December 2016, data release in March 2017

First Workshop on Universal Dependencies  
http://universaldependencies.org/udw17/ 

• Collocated with NoDaLiDa, May 20, 2017, Gothenburg, Sweden

• Submission deadline: March 20, 2017
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