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Introduction

ORIGINAL OR TRANSLATION?

EXAMPLE (O OR T?)
We want to see countries that can produce the best

product for the best price in that particular business . I have
to agree with the member that free trade agreements by
definition do not mean that we have to be less vigilant all of a
sudden .

EXAMPLE (T OR O?)
I would like as my final point to say that we support free

trade , but we must learn from past mistakes . Let us hope
that negotiations for free trade agreements with the four
Central American countries introduce a number of other
dimensions absent from these first generation agreements .
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Introduction

UNDERLYING ASSUMPTIONS

Research in Translation Studies can inform Natural Language
Processing, and in particular improve the quality of machine
translation

Computational methodologies can shed light on pertinent questions
in Translation Studies
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Introduction Translationese

TRANSLATIONESE
THE LANGUAGE OF TRANSLATED TEXTS

Translated texts differ from original ones

The differences do not indicate poor translation but rather a
statistical phenomenon, translationese (Gellerstam, 1986)

Toury (1980, 1995) defines two laws of translation:

THE LAW OF INTERFERENCE Fingerprints of the source text that
are left in the translation product

THE LAW OF GROWING STANDARDIZATION Effort to standardize
the translation product according to existing norms in the target
language and culture
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Introduction Translationese

TRANSLATIONESE
THE LANGUAGE OF TRANSLATED TEXTS

TRANSLATION UNIVERSALS (Baker, 1993)

“features which typically occur in translated text rather
than original utterances and which are not the result of
interference from specific linguistic systems”

SIMPLIFICATION (Blum-Kulka and Levenston, 1978, 1983)

EXPLICITATION (Blum-Kulka, 1986)

NORMALIZATION (Chesterman, 2004)
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Introduction Translationese

TRANSLATIONESE
WHY DOES IT MATTER?

Language models for statistical machine translation
(Lembersky et al., 2011, 2012b)

Translation models for statistical machine translation
(Kurokawa et al., 2009; Lembersky et al., 2012a, 2013)

Cleaning parallel corpora crawled from the Web
(Eetemadi and Toutanova, 2014; Aharoni et al., 2014)

Understanding the properties of human translation (Ilisei et al.,
2010; Ilisei and Inkpen, 2011; Ilisei, 2013; Volansky et al., 2015;
Avner et al., 2016)

© Shuly Wintner (University of Haifa) Translationese 12 December, 2016 7 / 112



Introduction Corpus-based Translation Studies

CORPUS-BASED TRANSLATION STUDIES

EXAMPLE (SUN AND SHREVE (2013))
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Introduction Corpus-based Translation Studies

COMPUTATIONAL INVESTIGATION OF TRANSLATIONESE

Translated texts exhibit lower lexical variety (type-to-token ratio)
than originals (Al-Shabab, 1996)

Their mean sentence length and lexical density (ratio of content to
non-content words) are lower (Laviosa, 1998)

Corpus-based evidence for the simplification hypothesis (Laviosa,
2002)
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Introduction Corpus-based Translation Studies

COMPUTATIONAL INVESTIGATION OF TRANSLATIONESE

EXAMPLE (PUNCTUATION MARKS ACROSS O AND T)
Frequency

Mark O T Ratio LL Weight

, 37.83 49.79 0.76 T T1
( 0.42 0.72 0.58 T T2
’ 1.94 2.53 0.77 T T3
) 0.40 0.72 0.56 T T4
/ 0.30 0.30 1.00 — —
[ 0.01 0.02 0.45 T —
] 0.01 0.02 0.44 T —
” 0.33 0.22 1.46 O O7
! 0.22 0.17 1.25 O O6
. 38.20 34.60 1.10 O O5
: 1.20 1.17 1.03 — O4
; 0.84 0.83 1.01 — O3
? 1.57 1.11 1.41 O O2
- 2.68 2.25 1.19 O O1
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Identification of Translationese

METHODOLOGY

Corpus-based approach

Text classification with (supervised) machine-learning techniques

Feature design

Evaluation: ten-fold cross-validation

Unsupervised classification
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Identification of Translationese

TEXT CLASSIFICATION WITH MACHINE LEARNING

EXAMPLE (FROM HE ET AL. (2012))
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Identification of Translationese

TEXT CLASSIFICATION WITH MACHINE LEARNING

Supervised machine learning: a training corpus lists instances
of both classes

Each instance in the two classes is represented by a set of numeric
features that are extracted from the instances

A generic machine-learning algorithm is trained to distinguish
between feature vectors representative of one class and those
representative of the other

The trained classifier is tested on an ‘unseen’ text, the test set

Classifiers assign weights to the features
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Identification of Translationese

TEXT CLASSIFICATION (AUTHORSHIP ATTRIBUTION)
APPLICATIONS

Determine the gender/age of the author (Koppel et al., 2003)

Tell Shakespeare from Marlowe (Juola, 2006)

Identify suicide letters

Spot plagiarism

Filter out spam

Identify the native language of non-native authors (Tetreault et al.,
2013)
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Identification of Translationese

IDENTIFYING TRANSLATIONESE
USING TEXT CLASSIFICATION

Baroni and Bernardini (2006)

van Halteren (2008)

Kurokawa et al. (2009)

Ilisei et al. (2010); Ilisei and Inkpen (2011); Ilisei (2013)

Koppel and Ordan (2011)

Popescu (2011)

Volansky et al. (2015); Avner et al. (2016)
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Identification of Translationese

EXPERIMENTAL SETUP

Corpus: EUROPARL (Koehn, 2005)

4 million tokens in English (O)

400,000 tokens translated from each of the ten source languages
(T): Danish, Dutch, Finnish, French, German, Greek, Italian,
Portuguese, Spanish, and Swedish

The corpus is tokenized and then partitioned into chunks of
approximately 2000 tokens (ending on a sentence boundary)

Part-of-speech tagging

Classification with Weka (Hall et al., 2009), using SVM with a
default linear kernel
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Translation Studies Hypotheses

HYPOTHESES

SIMPLIFICATION Rendering complex linguistic features in the source
text into simpler features in the target (Blum-Kulka and Levenston,
1983; Vanderauwerea, 1985; Baker, 1993)

EXPLICITATION The tendency to spell out in the target text utterances
that are more implicit in the source (Blum-Kulka, 1986; Øver̊as, 1998;
Baker, 1993)

NORMALIZATION Efforts to standardize texts (Toury, 1995), “a strong
preference for conventional grammaticality” (Baker, 1993)

INTERFERENCE The fingerprints of the source language on the
translation output (Toury, 1979)

MISCELLANEOUS
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Translation Studies Hypotheses

FEATURES SHOULD...

1 Reflect frequent linguistic characteristics we would expect to be
present in the two types of text

2 Be content-independent, indicating formal and stylistic differences
between the texts that are not derived from differences in contents,
domain, genre, etc.

3 Be easy to interpret, yielding insights regarding the differences
between original and translated texts
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Translation Studies Hypotheses Simplification

SIMPLIFICATION

LEXICAL VARIETY Three different type-token ratio (TTR) measures,
where V is the number of types and N is the number of tokens per
chunk, V1 is the number of types occurring only once in the chunk

V/N log(V )/log(N) 100× log(N)/(1−V1/V)

MEAN WORD LENGTH In characters

SYLLABLE RATIO the number of vowel-sequences that are delimited by
consonants or space in a word

MEAN SENTENCE LENGTH In words

LEXICAL DENSITY The frequency of tokens that are not nouns,
adjectives, adverbs or verbs

MEAN WORD RANK The average rank of words in a frequency-ordered
list of 6000 English most frequent words

MOST FREQUENT WORDS The frequencies of the N most frequent
words, N = 5,10,50
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Translation Studies Hypotheses Explicitation

EXPLICITATION

EXAMPLE (EXPLICITATION)

T O
israelische Ministerpräsident Benjamin Netanjahu Merkel

EXPLICIT NAMING The ratio of personal pronouns to proper nouns;
this models the tendency to spell out pronouns

SINGLE NAMING The frequency of proper nouns consisting of a single
token, not having an additional proper noun as a neighbor

MEAN MULTIPLE NAMING The average length (in tokens) of proper
nouns

COHESIVE MARKERS The frequencies of several cohesive markers
(because, but, hence, in fact, therefore, ...)
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Translation Studies Hypotheses Normalization

NORMALIZATION

REPETITIONS The frequency of content words (words tagged as nouns,
verbs, adjectives or adverbs) that occur more than once in a chunk

EXAMPLE (REPETITIONS, BEN-ARI (1998))
O Manchmal denke ich: Haben Sie vielleicht ein kaltes Herz? ... Haben
Sie wirklich ein kaltes Herz?

T Je pense quelquefois: aurait-elle un cœur insensible? ... Avez-vous
vraiment un cœur de glace?

CONTRACTIONS Ratio of contracted forms to their counterpart full
form

AVERAGE PMI The average PMI (Church and Hanks, 1990) of all
bigrams in the chunk

THRESHOLD PMI Number of bigrams in the chunk whose PMI is
above 0
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Translation Studies Hypotheses Interference

INTERFERENCE

Fingerprints of the source text, “source language shining through”
(Teich, 2003)

Not necessarily a mark of bad translation! Rather, a different
distribution of elements in T and O

Positive vs. negative interference

EXAMPLE (INTERFERENCE)
POSITIVE doch is under-represented in translation to German

NEGATIVE One is is over-represented in translations from German to
English (triggered by Man ist)
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Translation Studies Hypotheses Interference

INTERFERENCE

POS n-GRAMS Unigrams, bigrams and trigrams of POS tags, modeling
variations in syntactic structure

CHARACTER n-GRAMS Unigrams, bigrams and trigrams of characters,
modeling shallow morphology

PREFIXES AND SUFFIXES The number of words in a chunk that begin
or end with each member of a list of prefixes/suffixes, respectively

CONTEXTUAL FUNCTION WORDS The frequencies in the chunk of
triplets 〈w1,w2,w3〉, where at least two of the elements are function
words, and at most one is a POS tag

POSITIONAL TOKEN FREQUENCY The frequency of tokens appearing in
the first, second, antepenultimate, penultimate and last positions in a
sentence
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Translation Studies Hypotheses Miscellaneous

MISCELLANEOUS

FUNCTION WORDS The list of Koppel and Ordan (2011)

PRONOUNS Frequency of the occurrences of pronouns in the chunk

PUNCTUATION ? ! : ; - ( ) [ ] ‘ ’ “ ” / , .

1 The normalized frequency of each punctuation mark in the chunk
2 A non-normalized notion of frequency: n/tokens
3 n⁄p, where p is the total number of punctuations in the chunk

RATIO OF PASSIVE FORMS TO ALL VERBS

SANITY CHECK Token unigrams and bigrams
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Supervised Classification
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Supervised Classification

RESULTS: SANITY CHECK

Category Feature Accuracy (%)

Sanity
Token unigrams 100
Token bigrams 100
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Supervised Classification Simplification

RESULTS: SIMPLIFICATION

Category Feature Accuracy (%)

Simplification

TTR (1) 72
TTR (2) 72
TTR (3) 76
Mean word rank (1) 69
Mean word rank (2) 77
N most frequent words 64
Mean word length 66
Syllable ratio 61
Lexical density 53
Mean sentence length 65

© Shuly Wintner (University of Haifa) Translationese 12 December, 2016 29 / 112



Supervised Classification Simplification

ANALYSIS: SIMPLIFICATION

Lexical density fails altogether to predict the status of a text, being
nearly on chance level (53% accuracy)

The first two TTR measures perform relatively well (72%), and the
indirect measures of lexical variety (mean word length, 66% and
syllable ratio, 61%) are above chance level

Mean word rank (77%) is closely related to the feature studied by
Laviosa (1998) (n top words) with two differences: our list of
frequent items is much larger, and we generate the frequency list
not from the corpora under study but rather from an external
much larger reference corpus

In contrast, the design that follows Laviosa (1998) more strictly (n
most frequent words) has a lower predictive power (64%)

While mean sentence length is much above chance level (65%), the
results are contrary to common assumptions in Translation Studies
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Supervised Classification Simplification

SIMPLIFICATION

EXAMPLE (MEAN SENTENCE LENGTH PER ‘LANGUAGE’)
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Supervised Classification Explicitation

RESULTS: EXPLICITATION

Category Feature Accuracy (%)

Explicitation

Cohesive Markers 81
Explicit naming 58
Single naming 56
Mean multiple naming 54
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Supervised Classification Explicitation

ANALYSIS: EXPLICITATION

Explicit naming, single naming and mean multiple naming do not
exceed 58% accuracy

On the other hand, the classifier that uses 40 cohesive markers
(Blum-Kulka, 1986; Koppel and Ordan, 2011) achieves 81%
accuracy

Such cohesive markers are far more frequent in T than in O

For example, moreover is used 17.5 times more frequently in T
than in O; thus 4 times more frequently; and besides 3.8 times
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Supervised Classification Normalization

RESULTS: NORMALIZATION

Category Feature Accuracy (%)

Normalization

Repetitions 55
Contractions 50
Average PMI 52
Threshold PMI 66
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Supervised Classification Normalization

ANALYSIS: NORMALIZATION

None of these features perform very well

Repetitions and contractions are rare in EUROPARL; the corpus
may not be suited for studying these phenomena

Threshold PMI, designed to pick on highly associated words and
therefore attesting to many fixed expressions, performs
considerably better, at 66% accuracy, but contrary to the
hypothesis (Kenny, 2001)

English has far more highly associated bigrams than translations:
O has stand idly , stand firm, stand trial , etc.; conversely, T
includes poorly associated bigrams such as stand unamended
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Supervised Classification Normalization

NORMALIZATION

EXAMPLE (NUMBER OF BIGRAMS WHOSE PMI IS ABOVE
THRESHOLD ACCORDING TO ‘LANGUAGE’)
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Supervised Classification Normalization

NORMALIZATION

EXAMPLE (TRANSLATED LANGUAGE IS LESS PREDICTABLE)
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Supervised Classification Interference

RESULTS: INTERFERENCE

Category Feature Accuracy (%)

Interference

POS unigrams 90
POS bigrams 97
POS trigrams 98
Character unigrams 85
Character bigrams 98
Character trigrams 100
Prefixes and suffixes 80
Contextual function words 100
Positional token frequency 97
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Supervised Classification Interference

ANALYSIS: INTERFERENCE

The interference-based classifiers are the best performing ones

Interference is the most robust phenomenon typifying translations

The character n-gram findings are consistent with Popescu (2011):
they catch on both affixes and function words

For example, typical trigrams in O are -ion and all whereas typical
to T are -ble and the

Part-of-speech trigrams is an extremely cheap and efficient classifier

For example, MD+VB+VBN, e.g., must be taken, should be
given, can be used
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Supervised Classification Interference

INTERFERENCE

EXAMPLE (THE AVERAGE NUMBER OF THE POS TRIGRAM
MODAL + VERB BASE FORM + PARTICIPLE IN O AND TEN TS)
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Supervised Classification Interference

ANALYSIS: INTERFERENCE

Positional token frequency yields 97% accuracy

The second most prominent feature typifying O is sentences
opening with the word ‘But’; there are 2.25 times more cases of
such sentences in O

A long prescriptive tradition in English forbids writers to open a
sentence with ‘But’, and translators are conservative in their lexical
choices (Kenny, 2001)

This is in fact standardization rather than interference
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Supervised Classification Interference

ANALYSIS: INTERFERENCE

Some interference features are coarse and may reflect
corpus-dependent characteristics

For example, some of the top character n-gram features in O
include sequences that are ‘illegal’ in English and obviously stem
from foreign names: Haarder and Maat or Gazpron

To offset this problem we use only the top 300 features in several
of the classifiers, with a minor effect on the results
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Supervised Classification Interference

RESULTS: REDUCED PARAMETER SPACE
(300 MOST FREQUENT FEATURES)

Category Feature Accuracy

Interference

POS bigrams 96
POS trigrams 96
Character bigrams 95
Character trigrams 96
Positional token frequency 93
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Supervised Classification Miscellaneous

RESULTS: MISCELLANEOUS

Category Feature Accuracy (%)

Miscellaneous

Function words 96
Punctuation (1) 81
Punctuation (2) 85
Punctuation (3) 80
Pronouns 77
Ratio of passive forms to all verbs 65
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Supervised Classification Miscellaneous

ANALYSIS: MISCELLANEOUS

The function words classifier replicates Koppel and Ordan (2011);
despite the good performance (96% accuracy) it is not very
meaningful theoretically

Subject pronouns, like I , he and she are prominent indicators of O,
whereas virtually all reflexive pronouns (such as itself , himself ,
yourself ) typify T

T has about 1.15 times more passive verbs, but it is highly
dependent on the source language

Punctuation marks are good predictors

The mark ‘.’ (actually indicating sentence length) is a strong
feature of O; ‘,’ is a strong marker of T

In fact, these two features alone yield 79% accuracy

Parentheses are very typical to T, indicating explicitation

Translations from German use many more exclamation marks, 2.76
times more than original English!!!
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Supervised Classification Miscellaneous

ANALYSIS: PUNCTUATION

EXAMPLE (PUNCTUATION MARKS ACROSS O AND T)
Frequency

Mark O T Ratio LL Weight

, 37.83 49.79 0.76 T T1
( 0.42 0.72 0.58 T T2
’ 1.94 2.53 0.77 T T3
) 0.40 0.72 0.56 T T4
/ 0.30 0.30 1.00 — —
[ 0.01 0.02 0.45 T —
] 0.01 0.02 0.44 T —
” 0.33 0.22 1.46 O O7
! 0.22 0.17 1.25 O O6
. 38.20 34.60 1.10 O O5
: 1.20 1.17 1.03 — O4
; 0.84 0.83 1.01 — O3
? 1.57 1.11 1.41 O O2
- 2.68 2.25 1.19 O O1
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Unsupervised Classification
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Unsupervised Classification Motivation

SUPERVISED CLASSIFICATION

Inherently dependent on data annotated with the translation
direction

May not be generalized to unseen (related or unrelated) domains:
modality (written vs. spoken), register, genre, date, etc.
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Unsupervised Classification Motivation

DATASETS

Europarl, the proceedings of the European Parliament, between the
years 2001-2006

the Canadian Hansard, transcripts of the Canadian Parliament,
spanning years 2001-2009

literary classics written (or translated) mainly in the 19th century

transcripts of TED and TEDx talks
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Unsupervised Classification Motivation

SUPERVISED CLASSIFICATION

feature / corpus EUR HAN LIT TED

FW 96.3 98.1 97.3 97.7
char-trigrams 98.8 97.1 99.5 100.0
POS-trigrams 98.5 97.2 98.7 92.0
contextual FW 95.2 96.8 94.1 86.3
cohesive markers 83.6 86.9 78.6 81.8
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Unsupervised Classification Motivation

PAIRWISE CROSS-DOMAIN CLASSIFICATION
USING FUNCTION WORDS

train / test EUR HAN LIT X-validation

EUR 60.8 56.2 96.3
HAN 59.7 58.7 98.1
LIT 64.3 61.5 97.3
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Unsupervised Classification Motivation

LEAVE-ONE-OUT CROSS-DOMAIN CLASSIFICATION
USING FUNCTION WORDS

train / test EUR HAN LIT X-validation

EUR + HAN 63.8 94.0
EUR + LIT 64.1 92.9
HAN + LIT 59.8 96.0
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Unsupervised Classification Unsupervised Classification

CLUSTERING
ASSUMING GOLD LABELS

feature / corpus EUR HAN LIT TED

FW 88.6 88.9 78.8 87.5
char-trigrams 72.1 63.8 70.3 78.6
POS-trigrams 96.9 76.0 70.7 76.1
contextual FW 92.9 93.2 68.2 67.0
cohesive markers 63.1 81.2 67.1 63.0
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Unsupervised Classification Cluster Labeling

CLUSTER LABELING

Labeling determines which of the clusters is O and which is T

Clustering can divide observations into classes but cannot label
those classes

Let Om (O-markers) denote a set of function words that tend to be
associated with O; Tm (T-markers) is a set of words typical of T

Create unigram language models of O and T:

p(w | Om) = tf (w)+ε

|Om|+ε×|V |
p(w | Tm) = tf (w)+ε

|Tm|+ε×|V |

The similarity between a class X (either O or T) and a cluster Ci is
determined using the Jensen-Shannon divergence (JSD) (Lin, 1991)

DJS(X ,Ci ) = 2

√
JSD(PX ||PCi

)
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Unsupervised Classification Cluster Labeling

CLUSTER LABELING

The assignment of the label X to the cluster C1 is then supported
by both C1’s proximity to the class X and C2’s proximity to the
other class:

label(C1)=


“O” if DJS(O,C1)×DJS(T ,C2)<

DJS(O,C2)×DJS(T ,C1)

“T” otherwise

C2 is then assigned the complementary label

We select O- and T-markers from a random sample of Europarl
and Hansard texts, using 600 chunks from each corpus

Labeling precision is 100% in all clustering experiments

This facilitates majority voting of several feature sets
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Unsupervised Classification Clustering Consensus among Feature Sets

CLUSTERING CONSENSUS

method / corpus EUR HAN LIT TED

FW 88.6 88.9 78.8 87.5
FW
char-trigrams
POS-trigrams

91.1 86.2 78.2 90.9

FW
POS-trigrams
contextual FW

95.8 89.8 72.3 86.3

FW
char-trigrams
POS-trigrams
contextual FW
cohesive markers

94.1 91.0 79.2 88.6
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Unsupervised Classification Sensitivity Analysis

SENSITIVITY ANALYSIS
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Unsupervised Classification Sensitivity Analysis

SENSITIVITY ANALYSIS
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Unsupervised Classification Mixed-domain Classification

MIXED-DOMAIN CLASSIFICATION

The in-domain discriminative features of translated texts cannot be
easily generalized to other, even related, domains

Hypothesis: domain-specific features overshadow the features of
translationese

We mix 800 chunks each from Europral and Hansard,
yielding 1,600 chunks, half of them O and half T

Running the clustering algorithm on this dataset yields perfect
separation by domain (and chance-level identification of
translationese)

Adding the literature corpus and clustering to three clusters yields
the same results
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Unsupervised Classification Mixed-domain Classification

MIXED-DOMAIN CLASSIFICATION

EUR
EUR EUR HAN HAN

method / corpus HAN LIT LIT LIT

KMeans
accuracy by domain 93.7 99.5 99.8 92.2
XMeans
generated # of clusters 2 2 3 3
accuracy by domain 93.6 99.5 – 92.2
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Unsupervised Classification Mixed-domain Classification

CLUSTERING IN A MIXED-DOMAIN SETUP

Given a set of text chunks that come from multiple domains, such
that some chunks are O and some are T, the task is to classify the
texts to O vs. T, independently of their domain

A two-phase approach

A flat approach
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Unsupervised Classification Mixed-domain Classification

CLUSTERING IN A MIXED-DOMAIN SETUP

EUR
EUR EUR HAN HAN

method / corpus HAN LIT LIT LIT

Flat 92.5 60.7 77.5 66.8
Two-phase 91.3 79.4 85.3 67.5
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Applications for Machine Translation

APPLICATIONS FOR MACHINE TRANSLATION

Fundamentals of statistical machine translation (SMT)

Language models

Translation models

© Shuly Wintner (University of Haifa) Translationese 12 December, 2016 64 / 112



Applications for Machine Translation Fundamentals of SMT

FUNDAMENTALS OF SMT

Motivation
When I look at an article in Russian, I say, “This is really
written in English, but it has been coded in some strange
symbols. I shall now proceed to decode.”

Warren Weaver, 1955

The noisy channel model

The best translation T̂ of a source sentence S is the target
sentence T that maximizes some function combining the
faithfulness of (T ,S) and the fluency of T
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Applications for Machine Translation Fundamentals of SMT

FUNDAMENTALS OF SMT

Standard notation: Translating a foreign sentence F = f1, · · · , fm
into an English sentence E = e1, · · · ,el
The best translation:

Ê = arg maxE P(E | F )

= arg maxE
P(F |E)×P(E)

P(F )

= arg maxE P(F | E )×P(E )

The noisy channel thus requires two components: a translation
model and a language model

Ê = arg max
E∈English

P(F | E )︸ ︷︷ ︸
Translation model

× P(E )︸ ︷︷ ︸
Language model
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Applications for Machine Translation Fundamentals of SMT

FUNDAMENTALS OF SMT

A language model to estimate P(E ) (estimated from a
monolingual E corpus)

A translation model to estimate P(F | E ) (estimated from a
bilingual parallel corpus)

A decoder that given F can produce the most probable E

Evaluation: BLEU scores (Papineni et al., 2002)
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Applications for Machine Translation Language Models

LANGUAGE MODELS
RESEARCH QUESTIONS

Test the fitness of language models compiled from translated texts
vs. the fitness of LMs compiled from original texts

Test the fitness of language models compiled from texts translated
from other languages

Test if language models compiled from translated texts are better
for MT than LMs compiled from original texts
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Applications for Machine Translation Language Models

LANGUAGE MODELS
METHODOLOGY

The fitness of a language model to a reference corpus is evaluated
using perplexity

PP(LM,w1w2 . . .wN) = N

√
N

∏
i=1

1

PLM(wi | w1 . . .wi−1)

Train SMT systems (Koehn et al., 2007) using different LMs and
evaluate their quality on a reference set

Quality is measured in terms of BLEU scores (Papineni et al., 2002)
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Applications for Machine Translation Language Models

PERPLEXITY RESULTS

German to English translations
Orig. Lang. 1-gram 2-gram 3-gram 4-gram

Mix 451.50 93.00 69.36 66.47
O-EN 468.09 103.74 79.57 76.79
T-DE 443.14 88.48 64.99 62.07
T-FR 460.98 99.90 76.23 73.38
T-IT 465.89 102.31 78.50 75.67
T-NL 457.02 97.34 73.54 70.56
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Applications for Machine Translation Language Models

PERPLEXITY RESULTS

French to English translations

Orig. Lang. 1-gram 2-gram 3-gram 4-gram
Mix 472.05 99.04 75.60 72.68
O-EN 500.56 115.48 91.14 88.31
T-DE 486.78 108.50 84.39 81.41
T-FR 463.58 94.59 71.24 68.37
T-IT 476.05 102.69 79.23 76.36
T-NL 490.09 110.67 86.61 83.55
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Applications for Machine Translation Language Models

PERPLEXITY RESULTS

Italian to English translations

Orig. Lang. 1-gram 2-gram 3-gram 4-gram
Mix 395.99 88.46 67.35 64.40
O-EN 415.47 99.92 79.27 76.34
T-DE 404.64 95.22 73.73 70.85
T-FR 395.99 89.44 68.38 65.54
T-IT 384.55 81.90 60.85 57.91
T-NL 411.58 98.78 76.98 73.94
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Applications for Machine Translation Language Models

PERPLEXITY RESULTS

Dutch to English translations

Orig. Lang. 1-gram 2-gram 3-gram 4-gram
Mix 434.89 90.73 69.05 66.08
O-EN 448.11 100.17 78.23 75.46
T-DE 437.68 93.67 71.54 68.57
T-FR 445.00 97.32 75.59 72.55
T-IT 448.11 100.19 78.06 75.19
T-NL 423.13 83.99 62.17 59.09
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Applications for Machine Translation Language Models

LANGUAGE MODELS
ABSTRACTION

No punctuation

No named entities

No nouns

No words: only parts of speech
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Applications for Machine Translation Language Models

ABSTRACTION RESULTS

No Punctuation
Orig. Lang. Perplexity Improvement (%)

MIX 105.91 19.73
O-EN 131.94
T-DE 122.50 7.16
T-FR 99.52 24.58
T-IT 112.71 14.58
T-NL 126.44 4.17
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Applications for Machine Translation Language Models

ABSTRACTION RESULTS

Named Entity Abstraction
Orig. Lang. Perplexity Improvement (%)

MIX 93.88 18.51
O-EN 115.20
T-DE 107.48 6.70
T-FR 88.96 22.77
T-IT 99.17 13.91
T-NL 110.72 3.89
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Applications for Machine Translation Language Models

ABSTRACTION RESULTS

Noun Abstraction
Orig. Lang. Perplexity Improvement (%)

MIX 36.02 11.34
O-EN 40.62
T-DE 38.67 4.81
T-FR 34.75 14.46
T-IT 36.85 9.30
T-NL 39.44 2.91
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Applications for Machine Translation Language Models

ABSTRACTION RESULTS

Part-of-speech Abstraction
Orig. Lang. Perplexity Improvement (%)

MIX 7.99 2.66
O-EN 8.20
T-DE 8.08 1.47
T-FR 7.89 3.77
T-IT 8.00 2.47
T-NL 8.11 1.11
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Applications for Machine Translation Language Models

MACHINE TRANSLATION RESULTS

DE to EN
LM BLEU

MIX 21.43
O-EN 21.10
T-DE 21.90
T-FR 21.16
T-IT 21.29
T-NL 21.20

FR to EN
LM BLEU

MIX 28.67
O-EN 27.98
T-DE 28.01
T-FR 29.14
T-IT 28.75
T-NL 28.11

IT to EN
LM BLEU

MIX 25.41
O-EN 24.69
T-DE 24.62
T-FR 25.37
T-IT 25.96
T-NL 24.77

NL to EN
LM BLEU

MIX 24.20
O-EN 23.40
T-DE 24.26
T-FR 23.56
T-IT 23.87
T-NL 24.52
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Applications for Machine Translation Language Models

DOES SIZE MATTER?
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Applications for Machine Translation Language Models

DOES SIZE MATTER?
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Applications for Machine Translation Language Models

TRANSLATION EXAMPLES
COHESIVE MARKERS

SOURCE Enfin, ce qui est grave dans le rapport de M. Olivier, c’est
qu’il propose une constitution tripotage.

O Finally, which is serious in the report of Mr Olivier, is that it
proposes a constitution tripotage.

T Finally, and this is serious in the report by Mr olivier, it is because it
proposes a constitution tripotage.

SOURCE C’est quand même quelque chose de précieux qui a été
souligné par tous les membres du conseil européen.

O Even when it is something of valuable which has been pointed out by
all the members of the European Council.

T It is nevertheless something of a valuable which has been pointed
out by all the members of the European Council.
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Applications for Machine Translation Language Models

TRANSLATION EXAMPLES
VERBS

SOURCE Une telle Europe serait un gage de paix et marquerait le refus
de tout nationalisme ethnique.

O Such a Europe would be a show of peace and would the rejection of
any ethnic nationalism.

T Such a Europe would be a show of peace and would mark the
refusal of all ethnic nationalism.

SOURCE Votre rapport, madame Sudre, met l’accent, à juste titre, sur
la nécessité d’agir dans la durée.

O Your report, Mrs Sudre, its emphasis, quite rightly, on the need to
act in the long term.

T Your report, Mrs Sudre, places the emphasis, quite rightly, on the
need to act in the long term.
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Applications for Machine Translation Language Models

TRANSLATION EXAMPLES
INTERFERENCE

SOURCE On ne dit rien non plus sur la responsabilité des fabricants,
notamment en grande-bretagne, qui ont été les premiers responsables.

O We do not say nothing more on the responsibility of the
manufacturers, particularly in Britain, which were the first responsible.

T We do not say anything either on the responsibility of the
manufacturers, particularly in great Britain, who were the first
responsible.
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Applications for Machine Translation Translation Models

TRANSLATION MODELS
RESEARCH QUESTIONS

Are parallel corpora (manually) translated in the same direction of
the MT task better than ones directed in the other direction?

If corpora consisting of texts (manually) translated in both
directions are available, how to build a translation model adapted
to the unique properties of the translated text?
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Applications for Machine Translation Translation Models

TRANSLATION MODELS
DIRECTION MATTERS!

Task S → T T → S

FR-EN 33.64 30.88
EN-FR 32.11 30.35
DE-EN 26.53 23.67
EN-DE 16.96 16.17
IT-EN 28.70 26.84
EN-IT 23.81 21.28
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Applications for Machine Translation Translation Models

TRANSLATION MODELS
DIRECTION MATTERS!

Task: French-to-English
Corpus subset S → T T → S

250K 34.35 31.33
500K 35.21 32.38
750K 36.12 32.90

1M 35.73 33.07
1.25M 36.24 33.23

1.5M 36.43 33.73
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Applications for Machine Translation Translation Models

TRANSLATION MODELS
DIRECTION MATTERS!

Task: English-to-French
Corpus subset S → T T → S

250K 27.74 26.58
500K 29.15 27.19
750K 29.43 27.63

1M 29.94 27.88
1.25M 30.63 27.84

1.5M 29.89 27.83
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Applications for Machine Translation Translation Models

TRANSLATION MODELS
DOMAIN ADAPTATION

GOAL: Given any bi-text consisting of both S → T and T → S subsets,
improve translation quality by taking advantage of information
pertaining to the direction of translation

TECHNIQUES:
Union: simple concatenation of corpora
Two phrase-tables: train a phrase table for each subset and pass
both to MOSES
Phrase table interpolation: using perplexity minimization
(Sennrich, 2012)
Add a feature in the phrase table indicating the direction of
translation
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Applications for Machine Translation Translation Models

TRANSLATION MODELS
ADAPTATION RESULTS

Task: French-to-English
System MIX MIX-EO MIX-FO

S → T 35.21 35.21 35.73
UNION 35.27 35.36 35.94
PPLMIN-1 35.46 35.59 36.26
PPLMIN-2 35.75 35.65 36.20
CrEnt 35.54 35.45 36.75
PplRatio 35.59 35.78 36.22
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Applications for Machine Translation Translation Models

TRANSLATION MODELS
ADAPTATION RESULTS

Task: English-to-French
System MIX MIX-FO MIX-EO

S → T 29.15 29.15 29.94
UNION 29.27 29.44 30.01
PPLMIN-1 29.64 29.94 29.65
PPLMIN-2 29.50 30.45 30.12
CrEnt 29.47 29.45 30.44
PplRatio 29.65 29.62 30.34
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The Power of Interference

THE POWER OF INTERFERENCE

Translations to English from L1 differ from translations to English
from L2

Translations from two languages are more similar to each other
when the two source languages are closer

The native language of ESL speakers can be accurately identified
by looking at their English texts
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The Power of Interference Cross-classification

CROSS-CLASSIFICATION

A classifier is trained to distinguish between O and T translated
from L1; it is then used to distinguish O from T translated from L2

(Koppel and Ordan, 2011)

EXAMPLE (TRAIN ON L1, TEST ON L2)

IT FR ES DE FI
IT 99 93 91 75 63
FR 90 98 90 83 70
ES 85 90 98 82 69
DE 73 74 74 98 70
FI 58 70 64 81 99
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The Power of Interference Clustering of Translations

CLUSTERING OF TRANSLATIONS FROM SEVERAL

LANGUAGES

First, translations to English from 14 European languages were
used for cross-classification using POS trigrams as features

The accuracy of classification was 76% (compare to a baseline of
100/14=7%)

Then, an unsupervised hierarchical clustering algorithm grouped
together English (and French) texts translated from 16 European
languages

Texts were represented using feature vectors, similarly to the
supervised experiments
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The Power of Interference Clustering of Translations

CROSS-CLASSIFICATION

EXAMPLE (CONFUSION MATRIX OF 14-WAY CLASSIFICATION OF
ENGLISH (LEFT) AND FRENCH (RIGHT) TRANSLATIONESE)

© Shuly Wintner (University of Haifa) Translationese 12 December, 2016 96 / 112



The Power of Interference Clustering of Translations

THE EUROPEAN TREE OF LANGUAGES

EXAMPLE (“GOLD” TREE)
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The Power of Interference Clustering of Translations

THE EUROPEAN TREE OF LANGUAGES

EXAMPLE (TREES OBTAINED WITH POS-TRIGRAMS, ENGLISH
(LEFT) AND FRENCH (RIGHT))
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The Power of Interference Clustering of Translations

THE EUROPEAN TREE OF LANGUAGES

EXAMPLE (EVALUATION OF TYPOLOGY TREES AGAINST GOLD
TREE)

Dist Distw
Feature EN T FR T EN T FR T

POS-trigrams 1.02 1.16 1.07 1.34
positional tokens 1.10 1.15 1.30 1.37
function words 1.32 1.82 1.43 1.90
cohesive markers 1.95 1.95 2.15 2.03
feature combination 1.00 1.46 1.13 1.58
random tree 2.00 1.95
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The Power of Interference Native Language Identification

NATIVE LANGUAGE IDENTIFICATION

Given a set of essays composed by ESL students, identify the
authors’ native language (out of 11 languages)

The dataset consists of TOEFL essays, contributed by the ETS

Each text is annotated by the prompt, the proficiency level and the
native language

The task is to identify the native language

Features

Results (Tsvetkov et al., 2013)
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The Power of Interference Native Language Identification

NATIVE LANGUAGE IDENTIFICATION

ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR P (%) R (%) F1

ARA 80 0 2 1 3 4 1 0 4 2 3 80.8 80.0 80.4
CHI 3 80 0 1 1 0 6 7 1 0 1 88.9 80.0 84.2
FRE 2 2 81 5 1 2 1 0 3 0 3 86.2 81.0 83.5
GER 1 1 1 93 0 0 0 1 1 0 2 87.7 93.0 90.3
HIN 2 0 0 1 77 1 0 1 5 9 4 74.8 77.0 75.9
ITA 2 0 3 1 1 87 1 0 3 0 2 82.1 87.0 84.5
JPN 2 1 1 2 0 1 87 5 0 0 1 78.4 87.0 82.5
KOR 1 5 2 0 1 0 9 81 1 0 0 80.2 81.0 80.6
SPA 2 0 2 0 1 8 2 1 78 1 5 77.2 78.0 77.6
TEL 0 1 0 0 18 1 2 1 1 73 3 85.9 73.0 78.9
TUR 4 0 2 2 0 2 2 4 4 0 80 76.9 80.0 78.4
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Conclusion

CONCLUSION

Machines can accurately identify translated texts

Translation “universals” should be reconsidered. Not only are they
dependent on genre and register, they also vary greatly across
different pairs of languages

The best performing features are those that attest to the
‘fingerprints’ of the source on the target

Interference, a pair-specific phenomenon, dominates other
manifestations of translationese

Translationese features are overshadowed by more salient features
of the text, including genre, register, domain, etc.
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Conclusion

CONCLUSION

Language models compiled from translated texts are better for
SMT than ones compiled from original texts

Translation models translated in the same direction as that of the
SMT task are better than ones translated in the reverse direction

Translation models can be adapted to translationese, thereby
improving the quality of SMT
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Conclusion

FUTURE DIRECTIONS

The features of Hebrew translationese: morphological markers
(Avner et al., 2016)

The features of machine translationese

Robust identification of machine translation output

More generally, the similarities and differences among various
interference phenomena:

Translation
Non-native speakers
Learners’ productions
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